Literal-Based MCS Extraction

نویسندگان

  • Carlos Mencía
  • Alessandro Previti
  • Joao Marques-Silva
چکیده

Given an over-constrained system, a Maximal Satisfiable Subset (MSS) denotes a maximal set of constraints that are consistent. A Minimal Correction Subset (MCS, or co-MSS) is the complement of an MSS. MSSes/MCSes find a growing range of practical applications, including optimization, configuration and diagnosis. A number of MCS extraction algorithms have been proposed in recent years, enabling very significant performance gains. This paper builds on earlier work and proposes a finer-grained view of the MCS extraction problem, one that reasons in terms of literals instead of clauses. This view is inspired by the relationship between MCSes and backbones of propositional formulas, which is further investigated, and allows for devising a novel algorithm. Also, the paper develops a number of techniques to approximate (weighted partial) MaxSAT by a selective enumeration of MCSes. Empirical results show substantial improvements over the state of the art in MCS extraction and indicate that MCS-based MaxSAT approximation is very effective in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review on Multiple Classifier System in Pattern Recognition

Recently many researchers concentrate on Multiple Classifier System (MCS) in pattern recognition. Pattern recognition system build in three steps i.e. database, feature extraction and classifier. MCS is Architect by combining more than one classifier i.e. either same or different classifiers for different pattern recognition applications such as emotion recognition, character recognition, face ...

متن کامل

An Efficient Approach to Face Recognition Using a Modified Center-Symmetric Local Binary Pattern (MCS-LBP)

In this paper, we present a novel face recognition method called Multi-scale block Center-Symmetric Local Binary Pattern (MCS-LBP). The face recognition process mainly consists of three phase: face representation, feature extraction, and classification. However, the most important phase is extraction, in which unique features of the face image are extracted. The Center-Symmetric Local Binary Pa...

متن کامل

On Segmentation Methods for Handwritten Arabic Documents

In the literature, two methods for the extraction zones of the document are more used. The first method is based on the Mathematical Morphology (MM). The second is based on Hough Transform (HT). The main contribution of this paper is the application of these methods to extract the handwritten components of the complex document. The second contribution is the combination between the HT and the M...

متن کامل

MCs Detection with Combined Image Features and Twin Support Vector Machines

Breast cancer is a common form of cancer diagnosed in women. Clustered microcalcifications(MCs) in mammograms is one of the important early sign. Their accurate detection is a key problem in computer aided detection (CDAe). In this paper, a novel approach based on the recently developed machine learning technique twin support vector machines (TWSVM) to detect MCs in mammograms. The ground truth...

متن کامل

Feature representation selection based on Classifier Projection Space and Oracle analysis

One of the main problems in pattern recognition is obtaining the best set of features to represent the data. In recent years, several feature extraction algorithms have been proposed. However, due to the high degree of variability of the patterns, it is difficult to design a single representation that can capture the complex structure of the data. One possible solution to this problem is to use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015